مقاله ها

منطق ریاضی

ریاضیات، همواره شبهه ناپذیرترین، دقیق ترین و روشن ترین معرفت تلقی می شود. بدین جهت، بسیاری از فلاسفه در ریاضیات تحقیق کرده اند تا دریابند، ریاضیات واجد چه خصیصه ای است که نتایج حاصل از آن اینچنین وثیق و مورد اعتماد است؟ و ایا چنین خصیصه ای را می توان برای کسب سایر اقسام معرفت نیز به کار برد و روشهای آن را در زمینه های دیگر هم بکار بست یا خیر؟

این گونه پژوهشها در مفاهیم، روشها، اسلوبها ومدلهای دخیل در ریاضیات و فلسفه را «فلسفة ریاضیات» نام نهاده اند.

در واقع، میل به تعمیق فهم ودرک از جهان وساختار آن، بستگی پایداری را بین فلسفه وعلوم ریاضی به وجود آورده است. اغلب فلاسفة بزرگ از ریاضیات یا علوم به فلسفه روی آورده اند. «افلاطون»[1] دستور داده بود، برسر در مدرسة او «آکادمیا» این جمله را نصب نمایند: « کسی که هندسه نمیداند وارد نشود.»؛ برخی از بزرگترین فیلسوفان، مبدع شاخه های جدید ریاضی هستند مانند: دکارت،[2] لایپ نیتس[3] و پاسکال[4].

سه نحلة عمدة فلسفی که امروزه در باب مبانی ریاضیات مطرح اند؛ هر یک در ادامة مباحث مهم ریاضی و توجه به روش ریاضی، به عرصة بروز وظهور رسیده اند والبته، هر کدام را باید متأثر از کاوشهای فلسفی پیشین در باب مبانی ریاضیات دانست.[5] روش ریاضی (روش استنتاجی محض) در نزد ریاضیدانان کنونی و فیلسوفان ریاضی از اهمیت بسیار زیادی برخوردار است، تلاش اصلی در این نحله های فلسفی این است که مبانی ریاضیات از نظر واقع گرایی و نزدیکی به واقعیت تبیین گردد.

یکی از این سه نحلة عمده، با عنوان «منطق گرایی» شالودة « منطق جدید» ویا «منطق ریاضی»[6] را بنا نهاد. کاری که به دست این نحله آغاز گردید بطور عمده به اصول ریاضیات ورابطة ریاضیات و منطق مربوط بود، اما نتایج چنان دامنه داری پیدا کرد، که رفته رفته در سراسر فلسفه تأثیر عمیق بر جای گذاشت.

منطق جدید، به اعتبارعنوانی که اکنون پیدا کرده است، «منطق کلاسیک» وبه اعتبار تحلیل آن از استدلالهای ریاضی و بحث درباره نظامهای صوری، منطق ریاضی نامیده می‌شود و از مبانی ریاضیات جدید وفلسفه تحلیلی به حسا ب می اید.[7]

کشفیات جدید در منطق جدید از مباحث گوناگون منطق در جریان تاریخی پیچیده ای نشأت گرفته است. سیر تحول تاریخی آن را می توان با نگرش به دو جریان متفاوت در نظر گرفت. یکی از این دو تاریخ استنتاج صوری است که با ارسطو واقلیدس شروع می شود. جریان دیگر تاریخ آنالیز ریاضی است که آغاز آن به ارشمیدس باز می‌گردد. این دو جریان سالهای متمادی، تا حدود قرن هفدهم، به گونه ای ممتاز از یکدیگر تکامل یافتند. در این زمان با نیوتن[8] ولایپ نیتس و کشف حساب انتگرال ودیفرانسیل بوسیله آنها مواجه می شویم که در نهایت ریاضیات ومنطق را با هم گره می زنند.

توسعة ریاضیات در این زمان و بویژه «حسابی شدن آنالیز»[9] موجب گردید که مفاهیم مختلفی از ریاضیات را بتوان به مفاهیم ساده تری تجزیه نمود وآنها را به مدد مفاهیم ساده تر وبسیار عمومی تر تعریف کرد. همین امر، سبب التزام برخی به این باور گردید که قضایای ریاضی به عنوان قضایای منطقی باید اثبات شوند و مفاهیم ریاضی باید بر پایة مفاهیم منطقی تعریف گردند.


 

 

 

لایپ نیتس

مبدع ومخترع منطق ریاضی و نحلة منطق گرایی لایپ نیتس بود. وی حقایق ریاضی و منطقی را مبتنی بر اصل عدم تناقض ~p (x)Λ ~ p(x)) ("xمی دانست. ونظام ریاضی ومنطقی رامبتنی براصل عدم تناقض فلسفی می دانست و براین باور بود که کلیه قضایای ریاضی و از جمله علوم متعارفة آن را می توان به مدد تعریفات واصل عدم تناقض ثابت کرد. در واقع، ذهن در تهیه و تشکیل علم ریاضیات، به نحو تحلیل عمل می کند و فقط به تعاریف و اصل عدم تناقض احتیاج دارد وپس از آن تحلیل به عمل می آورد.[10]

از دیگر متفکران عرصه منطق ریاضی که به نحوی در مسیر تکاملی آن نقش مؤثری داشته اند؛ می توان به جورج بول(م1864-1815)[11] اشاره کرد. وی کوشیده بود تا منطق را جبری کند و حساب مجموعه ها را تدوین نماید. وی منطق را دست نشاندة ریاضیات می دانست. ویلیام استنلی جونز[12] (م1882-1835) معتقدبود که منطق علم بنیادین است. جان‌ون[13] (م1923-1834) درعین حال که می کوشید تا اختلافهای نظام «بول» را برطرف و بر بی‌نظمی معاصردرعرصة نشانه پردازی نمادین غلبه کند، به منطق ریاضیات به چشم شاخه های جداگانة زبان نمادین نگاه می کرد و برآن بود که هیچکدام دست نشاندة دیگری نیست. در آمریکا چ.س.پیرس، جبر منطقی بول را تعدیل وکامل تر کرد و نشان داد که چگونه می تواند پذیرای روایت تجدیدنظر یافتة منطقِ نِسَب که به همت اوگوستوس دمورگان[14] (م1817-1806) تدوین یافته بود، باشد. در آلمان فریدریش ویلهلم شرودر[15] (م1920-1841)تنسیق کلاسیکی به جبر منطقی بول که به دست پیرس تعدیل یافته بود، داد.[16]

فرگه

«ددکیند»[17] و «فرگه»[18] نیز در تحلیل حقایق ریاضی به گزاره های منطقی بدیهی، تلاش زیادی کردند. فرگه کوشید که درآثارش باعنوان «مبانی حساب »[19] و« قوانین بنیادی علم حساب»[20] ریاضیات را از جبر جداکند.

فرگه سعی داشت نشان دهد که فرضهای اولیه ای که ریاضیات برآنها استوار است همه از مقدماتی ترین اصول منطق قابل استنتاجند. براین اساس، هر قضیة ریاضی از مقدمات صرفاً منطقی به طریق قیاس قابل استنتاج است. شیوةکار وی دربردارندة دو اصل بود:

الف: تعریف مفاهیم حساب، صرفاً درچارچوب منطق

ب: نشان دادن اینکه حساب از مقدمات صرفاً منطقی قابل استنتاج است.[21]

علاوه بر این وی موفق شد نقیصه ای را که منطق ارسطویی تا قرن نوزدهم با آن روبرو بود، برطرف سازد وآن کلیت تام نداشتن منطق ارسطویی بود. فرگه این نقیصه را مرتفع گرداند و به این وسیله موفق به بیان مقدماتی شدکه بیشتر علم حساب از آنها قابل استنتاج بود.[22]

تا پیش از فرگه، تصور می‌شد که قوانین منطق، قوانین فکر و اندیشة آدمی است به این معنا که با فرایندهای ذهن آدمی سروکاردارد.[23] فرگه تأکید داشت که منطق یکسره عینی است و به هیچ وجه با فرایندهای روانی مرتبط نیست. مجموعه هایی که اعداد را به آنها احاله می کنیم یا برمی‌گردانیم ذواتی به کلی عینی هستند و بدین جهت منطق، کاملاً مستقل از روانشناسی است و امکان ندارد که صحت و اعتبار برهان (صدق اینکه چه چیز از چه چیز لازم می اید یا نمی اید) وابسته به امور امکانی در روان آدمی باشد. گزاره های منطق، حقایقی عینی هستند که ذهن قادر به دریافت آنهاست، اما صحت و اعتبارشان به هیچ وجه به ویژگیهای تفکر بستگی ندارد.

پئانو[24]، نیز در همان جهت فرگه، منتها با دستگاهی با کارآمدی کمتر از دستگاه او کار می‌کرد. وی قضایای ریاضی را با علائم منطقی تبیین نمود. او به همراه همفکرانش در کتاب فرمولهای ریاضی[25] (1908-1895) نشان داد که حساب و جبر می توانند از اندیشه های منطقی خاصی نظیر اندیشه های مربوط به مجموعه و عضویت یک مجموعه، سه مفهوم ابتدائی ریاضی وشش گزاره ابتدایی اشتقاق یابند. راسل و وایتهد، از طریق وی به اهمیت کارهای فرگه پی بردند. ایشان از نمادنگاری منطقی یا نشانه پردازی پئانو در تدوین کتاب «مبانی ریاضیات» که کار پئانو و فرگه را تکامل بخشید، استفاده کردند.

راسل[26] و وایتهد[27]

منطق گرایی و اصول منطق ریاضی بطور عمده بر پایة نظرات راسل می باشد وی بر این عقیده است که قضایای ریاضی، قابل تحویل به منطق است و قضایای ریاضی مبتنی بر مفاهیم منطقی است، به عبارت دیگر، ریاضیات قابل تبدیل به منطق است به این معنی که ریاضیات خالص را می توان اصولاً از پاره ای مفاهیم منطقی بدوی و قضایای غیر قابل اثبات، استنتاج نمود، وی با ارائة اصل تحویل یا انحلال، تمامی ریاضیات را از یک مجموعه مبانی، که می بایست منطقی خوانده شوند، استنتاج نمود[28]، بنابراین مطابق عقیده او، باید ریاضیات را از دل منطق بیرون آورد.

کتاب سه جلدی «پرینکیپیا ماتیما تیکا»[29] مبانی ریاضیات که محصول کار مشترک راسل[30] و وایتهد در طول ده سال می‌باشد و در سالهای 1913-1910 منتشر گردید. آنها کوشیده اند تا نشان دهند که ریاضیات محض قابل تبدیل به منطق است، به این معنی که می توان ثابت کرد که ریاضیات از مقدمات منطقی محض بر می‌اید و فقط مفاهیمی را به کار می برد که قابل تعریف به زبان منطق اند. البته در عمل ما به سادگی نمی توانیم هر فرمول پیچیده ریاضی را بر داریم و بدون جد وجهد فراوان به زبان اصطلاحات محض منطقی بیان کنیم؛ ولی اصولاً کل ریاضیات محض، قابل اشتقاق از مقدمات منطقی است، به بیان راسل، ریاضیات بلوغ منطق است. راسل بر این عقیده بود که رد قاطعی از نظریه های کانتی به دست داده است و حقیقت تز خویش را در کتاب مبانی ریاضیات مبرهن ساخته است.

آنچه توجه به آن ضروری است، این است که بر خلاف خواست راسل، فرگه و وایتهد، نه تنها ریاضیات تابع منطق نشد؛ بلکه منطق بیشتر تابع ریاضیات شده است. و هر چه منطق ریاضی، رفته رفته ریاضی تر شده، ارتباطش با فلسفه کاسته شده است. علاوه بر این باید اعتراف کرد که تز تحویل ریاضیات به منطق به هیچ وجه مقبولیت عام در بین ریاضیدانان نیافته است؛ گر چه هیچکس در این امر تردیدی ندارد که تلاش راسل و همفکرانش در زمینه منطقی کردن ریاضیات و تکامل بخشیدن به منطق ریاضی، کاری عظیم بوده و باعث توسعه منطق ریاضی گردیده است؛ اما این سیستم در عرضه داشتن نظامی کامل و تمام، توفیق نیافته است و اشکالات فراوان متوجه این نظام می باشد.

پی نوشت:

[1] ( حدود 427 تا 347 ق.م) Platon

[2] (1596- 1650م) Descates

[3] (1716- 1664م) Leipzig

[4] (م 1662- 1623) ‍Pascal

[5] این سه نحله عبارتند از:

الف)منطق گرایی (logicism)که مبتنی بر نظریات «راسل» و «وایتهد» است.

ب)شهود گرایی ) (intutionism که بر پایه نظرات«براور» ریاضی دان معروف هلندی بنا گردیده است.

ج)صورت گرایی(formalism) که مؤسس آن«هیلبرت» است.

این سه نحله بنحوی از آراء فلسفی «لایپ نیتس و کانت» متأثر بوده اند، منطق گرایی از لایپ نیتس آغاز شد و توسط فرگه و راسل دنبال شد. آراءفلسفی کانت نیز در بنای دو نحله دیگر مؤثر بوده اند. به عقیدة او اصول متعارف وقضایای ریاضی خود صرفاً اصولی منطقی نیستند؛ بلکه به اموری فرا منطقی نیازمندند، پس باید ازشهود کمک گرفت. وی حقایق ریاضی راپیشینی ترکیبی ( thetic a priori)محسوب می دارد. هیلبرت با استفاده از تفکر کانت نحله صورت گرایی راپایه ریزی کرد و براور نیز از مبانی تفکر کانتی نحله شهودگرایی را پی افکند.

[6] Mathematical Logic

[7]موحد، ضیاء، درآمدی به منطق جدید، شرکت انتشارات علمی وفرهنگی ، چاپ دوم، 1362، ص یک.

[8] (م1727-1642) Newton

[9] Arithmctization of Analysis

[10] در مقابل این نظر، کانت براین عقیده است که ریاضیات یک علم تحلیلی محض نیست که فقط معلوماتی دربارة مضامین، مفاهیم یا معانی الفاظ بدهد؛ بلکه معلومات پیشین دربارة متعلقات شهود خارجی می دهد اما این ممکن نیست مگر اینکه شهودات لازم برای ساختن ریاضیات همگی مبتنی برشهودات پیشین باشند، که شرایط ضروری برای نفس امکان تعلقات شهود خارجی هستند. بنابراین هندسه علمی است که خواص مکان را ترکیبی ولی به نحوپیشبینی تعیین می‌کند واین امر همان قدر که درمورد هندسه صادق است دربارة علم حساب هم صدق می کند. وی در این رای با افلاطون شریک است که معرفت ریاضی دارای خاصیت پیشبینی است هر چند نحوه بیان او درباره آن با افلاطون فرق دارد. ر.ک: کاپلستون، فردریک، تاریخ فلسفه، ترجمه: اسماعیل سعادت، ومنوچهر بزرگمهر، شرکت انتشارات علمی وفرهنگی وانتشارات سروش، تهران،1375، ج6، ص259و258.

[11] George Bool

[12] William Stanley Jevons

[13] John Venn

[14] Augustus Demorgan منطق و ریاضی دان انگلیسی و بانی کارهای اساسی در منطق جدید که معروفترین آنها تسویر محمولات و قضیه دمورگان است.

[15] Friedrich Wilhelm Schroder

[16] همان، ترجمه بهاءالدین خرمشاهی، ج8 ، ص474.

[17] (م1885) Dedekind

[18] (م1930- 1884) Frege

[19] Die Grundlagen der Arithmetik

[20] Grundgesteze de Arithmetik

See: Bryan Magee¸ The great philosophers¸ Oxford University Press¸ 1988¸ p.302 [21]

[22] بعدها «گودل1931» نشان داد که این کار بطور کامل، شدنی نیست و استنتاج صوری حساب ممکن نیست، تکمیل شود در اوایل این قرن «هیلبرت» ریاضیدان معروف این مسأله را مطرح کرد: کدام دستگاه صوری است که بتواند همه عبارتهای راست ریاضی و فقط آنها را به دست دهد. هدف از دستگاه صوری عبارت است از این که بتوانیم همه چیزهایی را که دربارة اعداد طبیعی راست هستند، ثابت کنیم. اما گودل نشان داد که با هر دستگاه صوری قابل تصوری هم شروع کنیم این کار نمی تواند انجام پذیرد. وی ثابت کرده که اگر دستگاهی صوری، که آن را F می نامیم، شامل حساب باشد، آنگاه:

1)گزاره ای از F یا روشن تر بگوییم ازحساب وجود دارد که راست است ولی اثبات پذیر نیست.

2)برای اثبات سازگاری F باید از دستگاه قوی تر استفاده کنیم.

ر.ک.ج.ن گراسلی، منطق ریاضی چیست؟ ترجمه شاپور اعتماد و غلامرضا برادران خسرو شاهی، چاپ کتیبه، چاپ اول، 1363، ص97و22و21.

[23] یکی از مهمترین کارهای او، حمله ای بود به کتابی در باب علم حساب، به قلم فیلسوف آلمانی«هوسرل» که منطق را نظریه ای درباره قوه حکم یادآوری معرفی می کرد.

[24] Peano

[25] Formulaires de Mathematiques

[26] (1970-1872) Russel

[27] (1947-1861 ) Whitehead

1999¸ P.238[28] See: paul Tomassi ¸ Logic¸ First published¸ London and NewYork¸

[29] pricipia mathematica

[30] راسل، پیشتر در سال 1903 کتاب دیگری موسوم به اصول ریاضیات (the principles of Mathematics ) انتشار داده بود.

 

پدید آورنده : نگارش: فاطمه محمدی آرانی

تاریخ

طراحی سایت
جمعه 4 اسفند 1396.
امروز
Feb 23 2018.
مطابق با:

ورود به سایت

یک حدیث

امام على (سلام الله علیه) : كانَ رَسولُ اللَّهِ(ص) دائِمَ البِشرِ، سَهلَ الخُلقِ، لَيِّنَ الجانِبِ. پيامبر خدا، همواره خوش رو، خوش خو و نرم خو بود. معانى‌الأخبار - ص 83. حكمت نامه پيامبر اعظم(ص) : ج8- ص22- ح5703

خبرخوان

 

شما اینجا هستید: صفحه ی اصلی